
OPTIMUM DESIGN AT POINTS OF REINFORCED CONCRETE SLABS USING
MATHEMATICAL PROGRAMMING

ALEXANDRE MIRANDA MONT'ALVERNE
Department of Mechanical Engineering, Federal University of Ceará (UFC), Center of
Technology, Pici Campus, Block 714, Fortaleza, CE, ZIP CODE 60455-760, Brazil. E-mail:
miranda@dem.ufc.br , miranda@cenapadne.br
LUIZ ELOY VAZ
Department of Civil Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-
Rio), Rio de Janeiro, RJ, ZIP CODE 22453-900, Brazil. E-mail: eloy@civ.puc-rio.br
MARTA DE SOUZA LIMA VELASCO
Department of Civil Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-
Rio), Rio de Janeiro, RJ, ZIP CODE 22453-900, Brazil. E-mail: marta@civ.puc-rio.br

Abstract. The optimum design is made for each point of the slab in function of the resultants
forces applied at the point. The determination of the resultants forces is made by the finite
element method with the hypothesis of linear elastic behavior. In the reinforced concrete
slabs the design should guarantee that at any point of the slab the resultants forces be
located on or inside the adopted yield surface. The yield surface is defined in function of the
positive and negative ultimate moments corresponding to the directions of the orthogonal
reinforcement of the slab. The ultimate resistant moments should be greater than every
resultants moment so that the yield surface includes these moments. The optimum design is
made using mathematical programming. The optimum design problem is solved by the
Interior Points Method algorithm (Herskovits, 1995). The optimum design program uses the
yield criterion proposed by Johansen (1962) and later on corrected by Velasco et al. (1994).
This article proposes a method of optimum design at points of reinforced concrete slabs with
orthogonal reinforcement, based on the yield criterion proposed by Velasco et al. (1994).
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1.  INTRODUCTION

Before introducing the method of optimum design of reinforced concrete slabs proposed
in this article, it is necessary to make clear that the design method used for the calculation of
the resistant efforts should be compatible with the analysis model used for the calculation of
resultants forces, that is to say, the slab should be designed for all the resultants forces that
the analysis model supplies. Models that better reproduce the reality drive, in general, to a



more appropriate reinforcement rate taking to a better description of the structure behavior.
The analysis models based on the theory of plates generally supply three moments at any
point of the slab: two moments of flexion xm  and ym , along the x  and y  axes respectively,

and a moment of torsion xym . When the analysis model considers the moment of torsion, the

design becomes more complex. In this case, it becomes indispensable to do the design taking
into consideration the existence of the moment of torsion, otherwise we will totally going
against safety. Today in the project of complex structures of reinforced concrete the finite
element method is used for the resultants forces numeric analysis driving, so, to projects that
better represent the reality. In this article, a formulation is presented for the optimum design
of reinforced concrete slabs using elastic-linear analysis in plates of flexion by the finite
element method and mathematical programming. The yield criteria proposed by Johansen
(1962) and later on corrected by Velasco et al. (1994), both used in the optimum design, are
an specific application for the reinforced concrete slabs. The yield criterion proposed by
Velasco et al. (1994) has as objective the correction of the yield criterion proposed by
Johansen usually used in the determination of the ultimate resistance of reinforced concrete
slab. The Interior Points Method algorithm (Herskovits, 1995) is used by the first time in the
optimum design at points of reinforced concrete slabs.

This article proposes a method of optimum design at points of reinforced concrete slab
with orthogonal reinforcement, based on the yield criterion proposed by Velasco.

2. YIELD CRITERION

The yield citerion is characterized by an yield surface, defined as the geometric locus of
the stresses tensor independent combinations components or of the independent combinations
stresses resultants that provoke the material plastification. Mathematically the yield surface
can be defined by the expression presented as follows:

( ) 0=³π (1)

The postulates of the plasticity define the yield surface as a continuous, convex area
which could be regular or not.

The yield surfaces implemented in this work were proposed by Johansen (1962) and
Massonet et al. (1972) and by Velasco et al. (1994), and are of specific application for
reinforced concrete slabs.

2.1 Yield criterion of Johansen

According to Johansen, the yield condition is based on the following physical criterion
proposed by Massonet et al. (1972): “The yield happens when the applied moment of flexion
in a cross-section of inclination θ  in relation to the x  axis reaches a certain value that just
depends on the angle θ  and on the resistant moments in the reinforcement directions.” The
basic parameters of the Johansen criterion are presented as follows:
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Figure 1 - Basic parameters of the Johansen criterion.

Yield surface of Johansen. The yield surface proposed by Johansen is frequently used to
determine the ultimate resistance in the project and design of reinforced concrete slabs
(Johansen, 1962) and (Massonet et al., 1972). The mathematical equations that define this
surface are presented as follows.
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Where, M px
+ , M py

+ , M px
−  and M py

−  are respectively the positive and negative

plastification moments by unit of length in the x  and y  directions.
The Equation (2) is associated to the positive yield line and Eq. (3) is associated to the

negative yield line.
The Equations (2) and (3) represent two conical surfaces that combined define the yield

surface of Johansen. The surface of Johansen is presented as follows:

Figure 2 – Yield surface of Johansen.
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2.2 Yield criterion of Velasco

This surface is proposed by Velasco et al. (1994) with objective of correcting the yield
surface of Johansen usually used in the determination of the ultimate resistance of the
reinforced concrete slabs. According to recent researches, the yield surface of Johansen
overestimates the resistance of the slab in pure torsion (Marti et al., 1987). Base on
experimental and numeric results it is necessary to correct the surface of Johansen in the case
where the moment of torsion possesses significant values in relation to the moments of
flexion and when a high reinforcement rate is used.

Yield surface of Velasco. The equations that represent the surface proposed by Velasco
are presented as follows:
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Where:

( )( ) ( )( )22
4141 +++ +×+= yxxy wwk ; ( )( ) ( )( )22

4141 −−− +×+= yxxy wwk (8)
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+
xa , +

ya , −
xa  and −

ya  are respectively the areas of the positive and negative reinforcement

in the x  and y directions, h  is the height of the slab, f y  is the steel bar yield characteristic

stress, fc  is the reduced compression resistance of the concrete ( ckc ff 45.0= ) and ckf  is the

characteristic resistance of the concrete.
The Equations (4) and (5) are the equations of the surface of Johansen. The Equations (6)

and (7) represent a surface with constant height, equal to the value of the ultimate moment of
torsion of Johansen reduced by the coefficient kxy , along the generatrix whose the projection

makes an angle of 450  with the mx  and ym  axes of the surface of Johansen. The ultimate

moment of torsion is obtained from the surface that supplies the smallest value. The surface
proposed by Velasco is presented as follows:



xm

xym

ym

450

450

xy

pypx

k

MM •

Figure 3 – Revised Surface.

3. OPTIMUM DESIGN USING MATHEMATICAL PROGRAMMING

The design is made here for each point of the slab in function of the applied resultants
forces at the point. The resultants forces determination is made by the finite element method
with the hypothesis of linear elastic behavior.

To design is to quantify values of the reinforcement so that the solicitation does not
surpass the resistance in a certain structural element. Optimum design is the determination of
values such as to turn minimum the difference between the resistance and the solicitation in a
certain structural element.

In the reinforced concrete slabs, the design is made in way of guaranteeing that at any
point of the slab the resultants forces xm , ym  and xym  be located on or inside of the adopted

resistance surface.
In the design of reinforced concrete slabs, the positive and negative ultimate resistant

moments can be considered as equal to the product of the “lever arm” ( )z  by the project

stress in the reinforcement ( sσ ) and by the areas of the positive and negative reinforcement

respectively. This way, all of them should be larger or equal to zero. Besides, the ultimate
resistant moments should be larger than every resultants moments so that the yield surface
includes these moments. The influence of the double reinforcement being despised, the
positive and negative ultimate resistant moments in the x  and y  directions are presented
respectively as follows:

++++ = sxxxpx zaM σ (11)
++++ = syyypy zaM σ (12)
−−−− = sxxxpx zaM σ (13)
−−−− = syyypy zaM σ (14)

The areas of the positive and negative reinforcement in the two directions are
determinated from Eqs. (11), (12), (13) and (14). The lever arm ( z ) and the project stress in
the reinforcement ( sσ ) are directly determinated by solving the equilibrium equations in the

ultimate limit state for a rectangular section simply reinforced subjected to a simple flexion,



and using the rectangular diagram for the concrete stresses and the project stresses diagram
for the steel (Fusco, 1986). For obtaining ( sσ ), different diagrams of project stresses are used

for the CA-25, CA-32, CA-40A, CA-50A, CA-60A, CA-40B, CA-50B and CA-60B steels.
The concept of minimum reinforcement foreseen in the brazilian NBR-6118 norm (ABNT,
1978) is also included in the program of optimum design.

The optimum design is arrived at by using mathematical programming. The
mathematical programming problem for the optimum design is presented as follows.
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In this work, two resistance criteria are used: the criterion of Johansen and the criterion
of Velasco. In both criteria the mathematical programming problem results in a problem of
non-linear programming with restrictions. As the objective function as the restrictions of this
problem are non-linear. In this work, the Interior Points Method algorithm is used
(Herskovits, 1995) to solve the mathematical programming problem indicated by Eq. (15).
One of the advantages of this algorithm in relation to others is that it has been shown more
efficient (Herskovits, 1995) for solving the Kuhn-Tucker equations of the problem which
means to solve directly a system of non-linear equations.

4. INTERIOR POINTS METHOD

The Interior Points Method is proposed by Herskovits (Herskovits, 1995). This method
can be applied for mathematical programming problems with a non-linear objective function
and non-linear restrictions. To solve this mathematical programming problem, the algorithm
uses its Kuhn-Tucker conditions. The initial point should be a point inside the viable area.
This algorithm generates a sequence of points inside this area until the convergence to the
optimum solution. The implemented algorithm demonstrated to be simple, robust and
efficient. It does not involve penalty functions, active group or subproblems of sequential
quadratic programming. In general lines, the algorithm just needs to solve two linear systems
with the same matrix in each interaction, and to accomplish a linear search without an excess
precision.

Consider the following mathematical programming problem:

0)(

)(

≤xgtosubject

xfmin
(16)

The Lagrangean function of this problem is presented as follows:

L x f x g xT( , ) ( ) ( )λ λ= − (17)

The Kuhn-Tucker conditions are presented as follows:



∇ + ∇ =f x g x( ) ( )λ 0 ; G x( )λ = 0; ( )λ ≥ 0 ; g x( ) ≤ 0 (18)

Where G  is the diagonal matrix with G gii i≡ . The Newton-Rapshon method is used to
solve the system of non-linear equations described by Eq. (18).
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Where ( , )xk kλ  is the initial point and ( , )xk k+ +1
0

1λ  is an estimate of the solution. For the
determination of a new viable point a linear search is accomplished in the direction
d x xk k k= −+1 . The detailed steps of the algorithm can be found in Herskovits (1995).

5. EXAMPLE

The optimum design at points of reinforced concrete slabs is made in two points of a
rectangular slab with two simply supported edges and two built-in edges submitted to a

uniformly distributed load equal to 
2

4.15
m

KN
q =  (Points A and B), and at point of a square

slab simply supported by three of its vertexes submitted to two load cases: a concentrated
load on its free vertex equal to KNP 28=  (Point C) and a concentrated load on its free vertex
equal the KNP 20=  (Point D). The rectangular slab has the side in the x  direction equal to

m7  and the side in the y  direction equal to m5 . A side in the x  direction and a side in the
y  direction are built-in in the rectangular slab. The side of the square slab is equal to m5 .
The square slab is submitted to a constant torsion state in both load cases.

The thickness of the slabs is equal to mh 12.0= . The useful height of the slabs in the x

and y  directions are respectively equal to mdx 105.0=  and mdy 1.0= . The elasticity

modulus of the concrete is equal the MpaEc
41094015.2 ×= , the elasticity modulus of the

steel is equal to MpaEs
5101.2 ×= , the Poisson coefficient of the concrete is equal to

2.0=ν , the characteristic resistance of the concrete is equal to MPafck 21= , the

characteristic resistance of the steel is equal to MPafyk 500= . The steel used in the

reinforcement is the CA-50A one.
The resultants moments were obtained through a linear elastic analysis with the use of

the finite element method. The used element was the isoparametric one with eight nodes, Q8
(Cook, 1981). The used meshes were a bilinear-quadrilateral mesh (14x10) in the rectangular
slab and a bilinear-quadrilateral mesh (10x10) in the square slab.

Table 1 presents the plastification moments and the reinforcement rates obtained by
using the optimum design program with the yield criterion of Johansen and the yield criterion
proposed by Velasco. The rectangular slab with its contour conditions and its applied load
and the squared slab with its contour conditions and its two load cases are presented as
follows.
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Figure 4 – Rectangular and square slab.

Table 1. Plastification moments and reinforcement rates.

Points
A B C D

xm -19.22 -0.77 0.0 0.0

ym -10.73 -0.65 0.0 0.0
Solicitations








m

mKN

xym 0.0 12.55 14.26 10.19

pxM 0.0 11.78 14.26 10.19

nxM 19.22 13.32 14.26 10.19

pyM 0.0 11.90 14.26 10.19

nyM 10.73 13.20 14.26 10.19

1r 0.0 0.0 0.0 0.0

Johansen

2r 0.0 0.0 0.0 0.0

pxM 0.0 15.27283 20.19093 11.34894

nxM 19.22 15.33071 20.19093 11.34894

pyM 0.0 15.33012 20.19093 11.34894

nyM 10.73 15.26786 20.19093 11.34894

1r 0.0 -98.8638 -204.326 -24.9603

2r 0.0 -55.344 -204.326 -24.9603

3r 0.0 -0.01412 -0.02107 -0.00453

Plastification
Moments








m

mKN

and
Restrictions

Velasco

4r 0.0 -0.01154 -0.02107 -0.00453

pxa 0.0 41069864.2 −× 41030051.3 −× 41031946.2 −×

nxa 41054562.4 −× 41007084.3 −× 41030051.3 −× 41031946.2 −×

pya 0.0 41087825.2 −× 41048713.3 −× 41044568.2 −×
Johansen

nya 41058153.2 −× 41021190.3 −× 41048713.3 −× 41044568.2 −×

pxa 0.0 41055014.3 −× 41079634.4 −× 41059534.2 −×

nxa 41054562.4 −× 41056447.3 −× 41079534.4 −× 41059534.2 −×

pya 0.0 410768.3 −× 41008474.5 −× 41073808.2 −×

Reinforcement
Rates







m

m2

Velasco

nya 41058153.2 −× 41075158.3 −× 41008474.5 −× 41073808.2 −×



Where the expressions 1r , 2r , 3r  and 4r  represent the restrictions ( ( )³° ) of the

mathematical programming problem presented by Eq. (15) and are presented as follows:
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6. CONCLUSION

In agreement with the results presented in table 1, for point A, the optimum design using
the yield criterion of Velasco supplies the same values of the optimum design using the yield
criterion of Johansen. This happens, because there is not a moment of torsion at this point
and consequently the yield criterion of Johansen and of Velasco coincide. For point B, the
optimum design using the yield criterion of Velasco supplies larger values than the optimum
design using the yield criterion of Johansen. This happens, because, at this point, the value of
the moment of torsion is significant in relation to the flexion moments and consequently the
surface proposed by Velasco is more restrictive than the surface of Johansen. For point D, the
optimum design using the yield criterion of Velasco supplies values lightly larger than the
optimum design using the yield criterion of Johansen. This happens, because, at this point,
there is only moment of torsion and consequently the surface proposed by Velasco is more
restrictive than the surface of Johansen. The difference among the values of the plastification
moments supplied at point D by the two criteria is equal to %37.11 . This small difference is
due to the fact that the moment of torsion is not very elevated at this point. For point C, the
optimum design using the yield criterion of Velasco supplies much larger values than the
optimum design using the yield criterion of Johansen. This happens, because, at this point,
there is only moment of torsion and consequently the surface proposed by Velasco is more
restrictive than the surface of Johansen. The difference among the values of the plastification
moments supplied at point C by the two criteria is equal to %6.41 . This great difference is
due to the elevated value of the moment of torsion at this point.
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